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The Gottesman Type System

When building a type system for our quantum programs, we need to include the following com-

ponents:

Ground types such as the identity gate and the X and Z rotation gates.

Gate operations such as gate multiplication, gate tensoring, and scalar multiplication

Function types in order to give programs types in addition to states

Intersection types to give us a notion of subtyping

While not necessary, stratifying the type system helps to ensure that types are well defined (al-

though there can still be ill-formed types even in the stratified syntax). Thus, all of this gives us

the following grammar for our type system:

V := T | V → V | V ∩ V

T := G(⊗G)∗

G := I | X | Z | −G | iG | G ∗G

We also define programs as follows:

P := H n | T n | S n | CNOT n m | P ;P
Where H n denotes applying the H gate to the n-th bit, etc. We then interpret P : V as being
True iff P has type V . So for example, the following is a valid typing statement for the CZ gate:

(H 1); (CNOT 0 1); (H 1) : X ⊗ I → X ⊗ Z
.

Typing rules

We formalize the typing rules of Rand et al. [5]. A subset of the rules is listed below:

Ground-Type Rules:

H 0 : (X → Z) ∩ (Z → X) CNOT 0 1 : (X ⊗ I → X ⊗ X)

Tensor Rules:

g 0 : A → A′ |E| = m− 1
g m : E ⊗ A⊗ E′ → E ⊗ A′ ⊗ E′ ⊗0

g 0 1 : A⊗B → A′ ⊗B′

g 1 0 : B ⊗ A → B′ ⊗ A′ ⊗-REV

Arrow and Sequence Rules

p : A → A′ p : B → B′

p : (A ∗B) → (A′ ∗B′)
MUL

p : A → A′

p : iA → iA′ IM

p1 : A → B p2 : B → C

p1; p2 : A → C
CUT

p1; (p2; p3) ≡ (p1; p2); p3

Intersection Rules

g : A g : B
g : A ∩B

∩-I
g : A ∩B

g : A
∩-E

g : (A → B) ∩ (A → C)
g : A → (B ∩ C)

∩-ARR
g : (A → A′) ∩ (B → B′)
g : (A ∩B) → (A′ ∩B′)

∩-ARR-DIST

Eigenvector Semantics

The eigenvector semantics is determined by the eigenstates of various gates and the effects of

of programs on the eigenstates of these gates. There are thus two different notions of typing

depending on whether we are considering states themselves or entire programs:

State Typing: States are typed by the unitaries for which they are eigenvectors of. So if |ψ〉 is
an eigenvector of A, we say that |ψ〉 has type A, or simply |ψ〉 : A.
Program Typing: Programs are typed based on where they send states. So a program p has
type A → B if p sends all eigenstates of A to eigenstates of B (we also require that the
eigenvalue stays the same). This is written p : A → B.

Intersection Types: One benefit of the eigenvector semantics is that it allows for program

subtyping. Thus, we can say things like p : T1 ∩ T2 to mean that p has type T1 and T2. Even
more powerfully, we can consider when the input or output type of a program are

intersections. Thus, the statement p : A ∩B → C means that p takes eigenstates of A and B
to eigenstates of C , still requiring that the eigenvalue is the same.

Examples

1. For all states |ψ〉, we have that |ψ〉 : I (Top Rule)

2. |0〉, |1〉 : Z and |+〉, |−〉 : X (Basis States)

3. |Φ+〉 : (X ⊗ X) ∩ (Z ⊗ Z) (Bell Pair)

4. |ψ〉 ⊗ |φ〉 : A⊗B whenever |ψ〉 : A and |φ〉 : B (Tensor Rule)

5. H : (X → Z) ∩ (Z → X) (H Gate)

6. CNOT : (X ⊗ I → X ⊗ X) ∩ (I ⊗ X → I ⊗ X) ∩ (Z ⊗ I → Z ⊗ I) ∩ (I ⊗ Z → Z ⊗ Z) (CNOT

Gate)

Heisenberg Semantics

Gottesman’s analysis [3] of quantum programs relies on the Heisenberg representation of quan-

tum operations: For a unitary program U , matrix N , and state |ψ〉, we have that UN |ψ〉 =
UNU†U |ψ〉. Thus, when U acts on the state, it turns the operator N into the operator UNU†.
Gottesman uses this to then say that U has type N → UNU†. More generally, we get that U has
type A → B if UA = BU .

It is a mathematical fact that when A,B, and U are unitary (as is always the case in quantum com-
puting) we have that U sends eigenvectors ofA to eigenvectors ofB preciselywhen UA = BU (as
usual, we require that the eigenvalue is unchanged). Therefore, disregarding intersection types,

the Heisenberg semantics exactly aligns with the eigenvector semantics. Considering intersection

types, however, the Heisenberg semantics is less strong because it does not provide an interpre-

tation for statements like U(A1 ∩ A2) = BU .

Why DoWe Need a Type System?

A type system may be useful for the following reasons:

We can classify programs based on their type which is more general than looking at their

specific effect

Using the typing rules, we can build efficient algorithms for determining the overall action

of a program

It gives us a new way of thinking about quantum programs

Implementation in the Coq Proof Assistant

A significant chunk of this work involves creating and verifying the eigenvector semantics. In

order to do this, we use a mathematical representation of states, gates, and programs. To keep the

complicated linear algebra out of the way of program verification, we also developed a symbolic

representation that was more straightforward to formulate and use. Then, we can deduce that p
has type T when the analogous statement is true in the mathematical representation.

Mathematical Representation

We use the matrix library from theQwire programming language [4] and proceed to create a more
general grammar than the one above (since we allow ground types to be any n-by-n matrix).

It was crucial to show that both semantics discussed above are equivalent in order to prove all

the necessary lemmas. For example, with the Heisenberg semantics, it is very straightforward to

show that U : A → A′ and U : B → B′ implies U : AB → A′B′. Showing this statement with the
eigenvector semantics, however, is more difficult.

Symbolic Representation

We define the syntactic grammar based on the grammar rules listed on the left. In order to

give the symbolic representation any meaning, we use various translation functions between the

representations. We then define typing based on the mathematical representation. In this way,

we were able to give meaning to the syntax.

Future Possibilities

Given what we have so far, there is much room for moving forwards, both in terms of applications

and expanding the type system:

1. We hope to capture the notion of separability present in the Gottesman types paper [5] and

extend the system with the typing rules for measurement present in ongoing work [6].

2. We also hope to type-check universal quantum programs by adding the missing typing rule

T : X → 1√
2(X + Y ). This will force us to recon with linear combinations of types and the

potential for exponential blowup.

3. In terms of applications, we plan to connect this work to the existing Qwire [4] libraries,
allowing for efficient verification of Clifford circuits. And once we can type T gate
applications, we hope to explore the range of programs that can be characterized or verified

efficiently within this framework.

4. We also hope to implement and verify the CHP algorithm [1] to more efficiently typecheck

circuits, and possibly Gidney’s recent alternative, Stim [2].
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